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Learning Semantics-Guided Representations for
Scoring Figure Skating
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Abstract—This paper explores semantic-aware representations
for scoring figure skating videos. Most existing approaches to
sports video analysis only focus on reasoning action scores based
on visual input, limiting their ability to depict high-level semantic
representations. Here, we propose a teacher-student-based network
with an attention mechanism to realize an adaptive knowledge
transfer from the semantic domain to the visual domain, which
is termed semantics-guided network (SGN). Specifically, we use
a set of learnable atomic queries in the student branch to mimic
the semantic-aware distribution in the teacher branch, which
is represented by the visual and semantic inputs. In addition,
we propose three auxiliary losses to align features in different
domains. With aligned feature representations, the adapted teacher
is capable of transferring the semantic knowledge to the student.
To verify the effectiveness of our method, we collect a new
dataset OlympicFS for scoring figure skating. Besides action scores,
OlympicFS also provides professional comments on actions for
learning semantic representations. By evaluating four challenging
datasets, our method achieves state-of-the-art performance.

Index Terms—Figure skating videos, sports video analysis, multi-
modality representation learning, teacher-student network, action
quality assessment.

I. INTRODUCTION

B ENEFITING from the healthy and graceful characteristics
of figure skating, an increasing number of people are par-

ticipating in this sport. And there are a great number of figure
skating videos uploaded online with the development of digital
cameras and media-sharing platforms. Therefore, it has become
increasingly important to accurately analyze various perfor-
mance indicators in sports videos, which have a great range of
applications in automatically scoring the players, highlighting
shot generation, and video summarization [1]. Unlike action
recognition focuses on classifying actions within a few sec-
onds [2], [3], [4], long-term figure skating analysis is more chal-
lenging since they contain richer and more complicated correla-
tions [5]. Although a great progress has been achieved in figure
skating analysis with the development of neural networks and
large-scale datasets [1], [6], [7], how visual processing depicts
and interacts with semantic representations remains unclear.
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Cognitive neuroscience research has found that the human
capability of recognizing actions involves two main processes,
the rapid visual analysis of the action in posterior regions along
the ventral stream and the activation of semantic knowledge
in anterior regions [8]. Visual processing leads to the auto-
matic activation of the conceptual knowledge [9], while the se-
mantic representations are activated along the ventral stream.
However, existing methods for sports video analysis mainly fo-
cus on exploiting visual context, without exploring semantic
information in videos, which limits their ability to cope with
high-dimensional semantic representations. Accordingly, to ad-
dress the question of how the visual properties of actions elicit
semantic information, we collect a new multimodal dataset and
propose a semantics-guided network (SGN) to bridge the gap
between semantic and visual domains.

A professional figure skating commentator can point out key
moments in the competition, such as impressive jumps or falls,
which could be collected in international figure skating competi-
tions and provide rich semantic information for visual represen-
tations. Based on this insight, we collect a new dataset, named
OlympicFS, from Olympic Winter Games in Pyeongchang 2018
and Beijing 2022. Our OlympicFS contains four categories of
figure skating competitions, i.e., men/ladies short program and
men/ladies free skating. For annotations, we provide scores from
professional judges in competitions. Importantly for our pur-
poses, we also collect detailed feedback from sports commenta-
tors, which provide rich semantic information for sports analysis
that was overlooked in previous works [6], [10].

To explore semantics-guided representations, we introduce
a teacher-student strategy specific to Transformers. Our model
aims at using semantic-aware representations to guide the train-
ing of visual features in the visual domain, as illustrated in
Fig. 1. Especially, in the semantic domain, we first aggre-
gate semantic descriptions and visual features by conducting
cross-attention [11] between semantic comments and videos to
generate semantic-aware representations. Then, these features
serve as the teacher to provide supervision for the visual do-
main. In the student branch, we define a set of learnable atomic
queries to describe different components in videos. For exam-
ple, a figure skating action consists of several key parts, such as
spin, sequence, jump, etc. These fine-grained queries enable the
model to identify the key atomic actions in videos. The training
of these atomic queries is guided by the teacher in the semantic
domain. Besides comments in our OlympicFS, the semantic rep-
resentations in the teacher branch could also be extracted from
other modalities, such as the music in [10].
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Fig. 1. Overview of our method. In the semantic domain, we encode comments
and video features jointly to generate semantic-aware representations. Then
these semantic-aware representations are used to guide the training of visual
features. The semantic information is only used for training, and we get the
figure skating score only based on the visual input during inference.

To bridge the feature space in both domains, we propose
three auxiliary losses in this work, which use the semantic-aware
distribution to guide the visual representations. Firstly, we use
a loss term to have the student network mimic the teacher’s
cross-attention distribution. In this way, the adapted teacher is
capable of transferring semantic knowledge to visual representa-
tions. Then, we propose a contrastive loss [12] to align features
in these two different domains. Furthermore, a score consis-
tency constraint is defined for teacher and student branch to align
the learned feature representations. After training, the obtained
atomic queries can independently extract semantic information
from sports videos, without relying on labeled comments. Con-
sequently, these semantic comments are not used during infer-
ence, which ensures the feasibility of our method in real-world
scenarios.

We evaluate our proposed method on our OlympicFS and
other two public datasets for scoring figure skating, i.e.,
FS1000 [10] and Fis-v [1]. Moreover, we also conduct exper-
iments on the MTL-AQA dataset [13], which is designed for
diving and also annotates action quality scores and description
of the dive. As a result, our method could outperform previous
works, demonstrating its effectiveness. We hope our exploration
will provide significant insights concerning knowledge transfer-
ring across different modalities to grasp a full understanding of
sports videos. In short, our contributions are summarized as fol-
lows:
� We propose a teacher-student-based network SGN, which

extracts semantic-aware representations to guide the train-
ing of visual features for scoring figure skating videos.

� Three auxiliary losses are proposed to align features in
semantic and visual domains and transfer semantic infor-
mation across these two feature spaces.

� We propose a new dataset OlympicFS, which is annotated
with detailed comments for learning semantic representa-
tions in figure skating videos.

� Extensive experimental results on OlympicFS, FS1000,
Fis-v, and MTL-AQA verify the effectiveness of our
method.

II. RELATED WORK

This section reviews closely related work on sports video anal-
ysis. Furthermore, we will discuss some literatures on video

analysis of figure skating. Finally, we discuss the relevant meth-
ods based on multimodal representation learning.

A. Sports Video Analysis

Sports video analysis has recently been topical in the research
communities. This technology has important applications in pro-
fessional sports [14], [15], such as football [16], [17], basket-
ball [18], volleyball [19], figure skating [1], [6], [7], [10] and
other fields [20], [21], [22]. Using deep learning technology,
computer vision systems can be trained to automatically iden-
tify different types of objects and actions in sports games and
provide more accurate analysis and predictions for sports under-
standing.

Besides detecting and recognizing actions in sports videos,
there are also a great number of works focusing on action qual-
ity assessment (AQA) [5], [13], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32]. Compared to action recognition [2],
[3], [4], [33] focuses on correctly classifying the action se-
quences from different categories, AQA is more challenging
as it requires dealinges with the videos from the same cate-
gory with poor intra-class discriminant. The mainstream meth-
ods treat AQA as a regression task, relying on reliable score
labels provided by expert judges. Early works [7], [34] in this
field used support vector regression to perform regression, with
input features consisting of either hand-crafted discrete cosine
transform or deep C3D [35] features. There were also works
using LSTM [1] and graph neural networks [36] to explore
spatio-temporal correlations in videos. Parmar and Morris [13]
introduced the concept of multi-task learning to enhance the
model capacity for AQA. Tang et al. [30] presented a novel
approach called uncertainty-aware score distribution learning,
which aimed to address the inherent ambiguity in action score
labels assigned by human judges. More recently, Yu et al. [24]
developed a group-aware regression tree (CoRe) to replace the
traditional score regression. Xu et al. [5] designed a Likert scor-
ing paradigm to quantify the grades explicitly. Li et al. [23]
proposed a pairwise contrastive learning network to focus on
the subtle difference between videos. Bai et al. [27] introduced
a temporal parsing transformer (TPT) to decompose the holistic
feature into temporal part-level representations.

B. Figure Skating Analysis

In computer vision, the analysis of figure skating videos can
be traced back to [7], which trained a regression model from
spatio-temporal pose features to scores obtained from expert
judges and gathered Olympic videos for action assessment. Sim-
ilarly, Xu et al. [1] collected 500 figure skating videos from ladies
single program for action scoring. They also developed an archi-
tecture, containing self-attentive LSTM and multi-scale LSTM,
to learn the local and global sequential information in videos.
Moreover, another fine-grained classification dataset FSD-10
was introduced in [6], which consisted of 10 different actions in
men/ladies programs. For classification, they further proposed a
key-frame-based temporal segment network. Additionally, sev-
eral dedicated models have been proposed for figure skating
analysis. Nakano et al. [37] detected the highlight in figure skat-
ing programs with people’s reactions. ACTION-Net [38] learned
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the video dynamic information and static postures of the de-
tected athletes in specific frames to strengthen the specific pos-
tures in videos. EAGLE-Eye [39] built a two-stream network
to reason about the coordination among the joints and appear-
ance dynamics throughout the performance. More recently, Xia
et al. [10] extended the MLP framework into a multimodal fash-
ion MLP-Mixer and effectively learns long-term representations
through the designed memory recurrent unit. Moreover, they also
collected an audio-visual FS1000 dataset, containing over 1000
videos for scoring figure skating videos.

In summary, the major technical differences between previ-
ous methods and ours include the following three aspects. 1) We
focus on a new problem, i.e., learning semantics-guided rep-
resentations for scoring figure skating, which is not explored
in [10], [24], [27]. 2) CoRe [24] and TPT [27] rely only on
visual features and do not delve into the semantic information
in videos. Instead, we aggregate semantic and visual features
jointly to generate semantic-aware representations. 3) Although
MLP-Mixer [10] learns multimodal representations by modeling
audio and visual features, one major difference is that we only
utilize semantic features to guide the training of atomic queries.
By learning semantics through atomic queries, we solely rely on
video input during the inference.

C. Multimodal Learning

There exists a rich exploration in multimodal learning, espe-
cially in the deep learning era [40], [41], [42], [43]. Not only
is this task integral to advancing machine perception of our
world where information often comes in different modalities, but
also has important implications in fundamental research such as
robotics, visual question answering, video captioning, and re-
trieval. More recently, Transformers [11] are prevalent in natu-
ral language processing and have also shown promising perfor-
mance in computer vision [44], [45], [46]. Therefore, more and
more works adopt Transformers architectures to predict contex-
tualized latent representations from different views. While these
approaches rely on large-scale datasets and employ multimodal
self-supervision tasks for pretraining, we focus on transferring
semantic knowledge to the visual domain to improve the un-
derstanding of figure skating actions. Some methods [47], [48]
focus on aggregating multimodal information from pre-trained
large-scale models. However, in the field of action assessment,
there have not yet been related large-scale models developed.
Therefore, our method and collected dataset could serve as a
solid starting point for future research on multimodal learning
in this domain.

III. OLYMPICFS DATASET

To further facilitate the study of learning semantic-aware
representations for figure skating scoring, we collected a new
dataset OlympicFS with high-quality videos. All of the videos
used in this study were captured by professional camera devices
during high-level competitions in Olympic Winter Games. The
dataset is designed to predict scores in figure skating competi-
tions, including rich annotations such as action scores, program

TABLE I
DATASET COMPARISON

categories and professional comments, which may further ad-
vance research in this field.

A. Data Collection

To construct the dataset, we searched and downloaded a
large quantity of figure skating videos from professional,
high-standard international skating competitions, including the
Olympic Winter Games in Pyeongchang 2018 and Beijing 2022.
Normally, OlympicFS consists of four categories: men/ladies
short program and men/ladies free skating. We collected official
video records of them from the Internet, ensuring these video
records are complete, distinctive and of high-resolutions, e.g.
1280× 720.

The raw videos collected from competitions are typically
untrimmed and capture the entire procedure, including the per-
formances of all players, highlight replays, warm-up parts, and
waiting-for-score at the Kiss&Cry. However, these redundant
parts may not be necessarily useful in judging the figure skat-
ing performance. And we aim to predict the figure skating
scores from the competition performance of each player, in-
stead of these “backgrounds”. Therefore, we manually process
all videos, reserving pure competition performance clips of play-
ers from the exact beginning to the ending moment of actions.
Some clips of OlympicFS are shown in Fig. 2.

B. Annotations

After collecting videos, we carefully annotated each video
with two scores, namely, Technical Element Score (TES) and
Program Component Score (PCS). These scores are given by
the mark scheme of the figure skating competition. The TES is
calculated based on the difficulty and execution of the technical
elements performed by the skater, such as jumps, spins, and
step sequences. The PCS evaluates the overall performance of
the skater in terms of their skating skills, performance/execution,
choreography, interpretation, and musicality. Both the TES and
PCS are given by different referees who are experts on figure
skating competition.

In addition to scores, we further collected professional com-
mentary during figure skating competitions as shown in Table I.
Similarly, we only collected commentary during the skating pro-
cess and did not use any post-scoring comments. To our best
knowledge, our dataset is the first one to utilize the commen-
tary feature in this area. Both score and commentary annotation
stages adopt a cross-validating method. Specifically, we employ
two workers who have prior knowledge in the figure skating
domain and divide data into two parts without overlap. The
annotation results of one worker are checked and adjusted by
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Fig. 2. Some examples of our OlympicFS dataset. Each row shows a complete figure skating action and we sample some important frames. We collect this dataset
from Olympic Winter Games in Pyeongchang 2018 and Beijing 2022, containing men/ladies short program and men/ladies free skating. Besides actions scores,
we also provide professional comments for each video.

Fig. 3. Pipeline of our proposed method. Firstly, we extract video features using the pre-trained video backbone. Then, the teacher branch learns semantic-aware
representations by constructing cross-attention between visual features and text queries. The student branch builds the attention mechanism using a set of learnable
atomic queries, which is guided by the teacher’s distributions. During inference, only the student branch is used with visual inputs, ensuring the feasibility of our
method in real-world scenarios.

another, which ensures annotation results are double-checked.
Under this pipeline, the total time of the whole annotation pro-
cess is about 100 hours. The dataset will be released for further
research purposes in this community.

IV. METHOD

Our proposed method is tailored for figure skating scoring
involving multiple individuals. In Section IV-A, we would first
show the details of feature extraction. Next, Section IV-B will
shed light on the details of extracting semantic-aware repre-
sentations. Then, we would elaborate on the structure of SGN

in Section IV-C, which learns semantic information from the
teacher branch. Moreover, the scoring loss will be introduced in
Section IV-D.

A. Feature Extraction

The pipeline of our method is illustrated in Fig. 3. Given a long
figure skating video, which usually has thousands of frames, we
first follow [4] to divide the input video into Tv segments. Each
segment contains multiple frames and we input these video seg-
ments into well-designed projection models [46] to extract visual
features. Then, an MLP is applied for reducing the dimension
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Fig. 4. Structure of the teacher branch, which learns semantic-aware repre-
sentations by cross-attention. The shapes of important tensors are shown in gray.
⊗ denotes matrix multiplication. Query, Key and Value are three different linear
projections.

of backbone features. Obtained feature sequences are denoted
as Xv ∈ R

Tv×D, where D is the feature dimension. For the text
input, we extract features Xt ∈ R

Tt×D by a token embedder
followed by a pre-trained Transformer [49].

B. Learning Semantic-Aware Representations

Since the features are independently extracted from the video
sequence, each clip only contains information of current segment
and lacks global context information. Therefore, we first use the
self-attention encoder to enrich segment-wise representations.
The self-attention mechanism involves the weighted aggregation
of segment features to obtain the context information of each
segment. The weights used in this process are determined by the
correlations between the current segment and others,

H0 = Softmax

(
WqsXv(WksXv)

�
√
D

)
WvsXv +Xv, (1)

where Wqs, Wks and Wvs are trainable matrices. Then, the H0

is passed into a feed-forward network (FFN) for further fusion,
which are represented as X̂v . Fig. 4 also shows this process,
where the FFN is omitted for simplicity.

In the teacher branch, we aim to extract semantic-aware rep-
resentations from provided commentaries. For this purpose, we
construct cross-attention between visual and text features to
learn semantic correlations of them. Inspired by DETR [50], the
Transformer decoder used in our model includes three parts, i.e.,
self-attention, cross-attention and FFN, as illustrated in Fig. 4.
Especially, the self-attention mechanism is applied for mining
the relationship among text features. Similarly, we denote the
updated text representations after the self-attention as X̂t.

The context-aware representations are learned by cross-
attention between the extracted X̂v and X̂t. Firstly, the query
is generated by X̂t, while the key and value are transformed

from X̂v via three different linear layers:

Qt = WqX̂t, Kv = WkX̂v, Vv = WvX̂v, (2)

where Wq , Wk and Wv are the trainable weights. The semantic
correlations between text and visual features are measured by
the dot-product similarity between the corresponding query-key
pair, which is formulated as

AT = Softmax

(
QtK

�
v√

D

)
, (3)

where
√
D serves as a scaling factor. AT ∈ R

Tt×Tv shows how
much the text features are related to the visual representations.
Finally, the output of cross-attention is obtained by aggregating
information between AT and Vv , followed by FFN,

HT = FFN(ATVv), (4)

where HT ∈ R
Tt×D is the output of the teacher branch.

C. Semantics-Guided Network

Unlike previous works [10], [13] that processed visual and
semantic information together for scoring actions, we use
semantic-aware representations to guide the learning of visual
features. In detail, we first define a set of learnable atomic queries
Xq ∈ R

K×D in the student branch, where K is the number of
queries. These queries are used to represent the key semantic
information for scoring, such as the glorious jump or terrible
fall in figure skating. Then, the implementation details are de-
fined analogously with the teacher branch while we replace the
text features with these learnable queries, which also include
self-attention, cross-attention and FFN. We denote the updated
queries after the self-attention as X̂q , and the following opera-
tions are

Q′
q = W ′

qX̂q, K
′
v = W ′

kX̂v, V
′
v = W ′

vX̂v, (5)

AS = Softmax

(
Q′

qK
′�
v√

D

)
, (6)

HS = FFN(ASV′
v), (7)

whereAS ∈ R
K×Tv andHS ∈ R

K×D are the attention map and
output of the student branch. After that, we use the semantic
knowledge in the teacher branch to guide the learning of the
student.

To learn semantic-aware representations, we first transfer
the self-attention matrices between two branches to explore
co-reference relationships between input tokens. The seman-
tic knowledge is implicitly encoded and has promising potential
for figure skating scoring. We formulate the distillation loss of
the attention distribution by minimizing the divergence between
the self-attention matrices of the teacher and the student, i.e.,
AT and AS . However, AT ∈ R

Tt×Tv and AS ∈ R
K×Tv usually

have different dimensions, where Tt >> K. Therefore, we ap-
ply max-pooling along theTt/K dimension to generate ÂT /ÂS ,
which extracts the most salient feature and enhances the feature
representation capability, without losing useful information. The
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distillation loss is therefore formulated as

Lattn =
1

Tvh

Tv∑
i=1

h∑
j=1

MSE(ÂT
i,j , Â

S
i,j), (8)

where MSE is the mean squared error, h is the attention heads
in the Transformer. Âi,j is the normalized attention for i-th clip
at j-th head.

Besides constraining the attention distribution of teacher and
student branches, we also employ a contrastive loss [12] between
the output features. Especially, the noise contrastive estimation
(NCE) loss is used to align the teacher & student’s feature rep-
resentations by contrasting the target instance (HS) with more
negative samples and aligning with its positive sample (HT ). We
use the average-pooling along the Tt/K dimension to map the
student and teacher features to the identical dimension, i.e., ĤT

and ĤS . And the objective loss is defined as

Lcons = − log
exp(sim(ĤS

i , Ĥ
T
i )/τ)∑N

j=1 1[j �=i]exp(sim(ĤS
i , Ĥ

T
j )/τ)

, (9)

where �[j �=i]∈{0, 1} is an indicator function evaluating to 1
iff j �= i, sim(u,v) = u�v/||u|| ||v|| denotes the dot product
between �2 normalized u and v (i.e., cosine similarity), τ de-
notes the temperature hyper-parameter. The final loss is com-
puted across all positive pairs in a mini-batch (N ). Although con-
trastive learning loss has been employed in previous works [23],
[24] for action assessment, we utilize it to learn semantic-aware
representations from the teacher network, guaranteeing the con-
sistency between the teacher & student’s learned feature repre-
sentations.

D. Figure Skating Scoring Loss

Here, we propose the loss function for figure skating scoring.
A common solution is to tackle this problem as a regression task
that maps the input video to the final score provided by referees.
As most of the same sports events are competed in similar envi-
ronment, the differences between the same competition videos
are often very subtle, and there are slight differences in how
the athletes perform the same actions. Based on this insight, we
follow [23], [24] to reformulate the problem of action quality
assessment as regressing the relative scores with reference to
another video that has a shared category. We especially map the
input video into the score space where the differences between
the action qualities can be measured by the relative score. There-
fore, for each video pair 〈Xv,p,Xv,q〉, 〈Ŝp, Ŝq〉 representing the
ground truth of action quality score, it needs to minimize the er-
ror between the predicted relative score and the corresponding
ground truth, which is defined as

Lscore = (ΔS − |Ŝp − Ŝq|)2, (10)

where ΔS is based on the output of features of these two videos,

ΔS = RΘ(Ĥp, Ĥq), (11)

where RΘ is the score regressor [24] parameterized by Θ. Our
method has two branches, therefore, the relative score losses are
calculated in two branches based on the corresponding extracted
features, denoted as LT

score and LS
score for teacher and student

branches respectively.

Furthermore, a score consistency constraint is defined for the
teacher and student branches to align the learned feature rep-
resentations. The consistency constraint confines the predicted
relative score at the teacher branch is equal to the calculated score
in the student branch. Therefore, a consistency loss function for
the relative score is defined as

Lc-score = (ΔST −ΔSS)2, (12)

where ΔST and ΔSS represent the predicted relative scores for
teacher and student branches respectively.

Finally, the overall loss function of the proposed AQA model
is summarized as

Ltotal = LT
score + LS

score + Lattn + Lcons + Lc-score, (13)

where the weights for different parts are the same for simplicity.
In the testing phase, we only use the feature representations

in the student branch, which are extracted by video backbone,
Transformer visual encoder, and atomic action decoder, to pre-
dict the figure skating score. The teacher branch is only used
during training to transfer semantic information, which guaran-
tees efficiency and feasibility in a real-world deployment.

V. EXPERIMENT

A. Datasets and Implementation Details

1) Datasets: Besides our OlympicFS, the proposed method
is also evaluated on FS1000 [10] and Fis-v [1] datasets for fig-
ure skating and MTL-AQA [13] dataset for diving to verify the
effectiveness of our method.

FS1000 has a training set of 1000 videos and a validation
set of 247 videos. There are totally eight categories of figure
skating competitions in this dataset, namely, men/ladies/pairs
short program, men/ladies/pairs free skating, and ice dance
rhythm dance/free dance. Besides TES and PCS, five additional
scores [10] are reported for FS1000 dataset, including Skat-
ing Skills (SS), Transitions (TR), Performance (PE), Compo-
sition (CO), and Interpretation of music (IN). Fis-v contains
400 videos for training and 100 for testing, which are trimmed
from the ladies single short program. The TES and PCS are
collected from the mark scheme of the figure skating competi-
tion. MTL-AQA comprises 1412 diving videos from 16 distinct
events, featuring both male and female athletes performing on
the 10 m platform and 3 m springboard. Each video is labeled
with various metrics, including the final score, difficulty degree,
and execution score assigned by the referees. As recommended
by [13], we adopt a split configuration where 1059 videos are
used for training and 353 videos are reserved for testing pur-
poses. OlympicFS collects 200 (160 for training and 40 for
testing) videos from Olympic Winter Games in Pyeongchang
2018 and Beijing 2022. It provides professional commentary in
addition to scores to explore the impact of semantics on scoring
performance.

2) Feature Extraction: As FS1000 has visual and music in-
puts, we use the extracted features in [10] for a fair compari-
son. For Fis-v, which only contains video input without addi-
tional text or audio annotations, we fine-tune our trained student
model on this dataset to show the effectiveness of our method.
For MTL-AQA, we follow the settings in [24], [27] to make
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TABLE II
COMPARISON WITH STATE-OF-THE-ART ON FS1000

a fair comparison, which uses the I3D model [33] pre-trained
on Kinetics as the backbone. In addition, the text feature of
MTL-AQA dataset is extracted by the BERT model. We extract
video features by Video Swin Transformer [46], and text fea-
tures by BERT [49] for OlympicFS. The number of segments
is set as Tv = 200 with 32 frames for each segment.

3) Evaluation Protocols: To make a fair comparison with
previous works [1], [10], we adopt Spearman’s rank correlation
as an evaluation metric, which is defined as

ρ =

∑
i(pi − p)(qi − q)√∑

i(pi − p̄)2
∑

i(qi − q̄)2
, (14)

where p and q represent the ranking for each sample of two
series respectively. Additionally, to give more insights into our
model, the Mean Square Error (MSE) is also used to evaluate our
model. Meanwhile, we further report the relative L2-distance
(R-�2) [24] for MTL-AQA to measure the performance more
precisely. Given the highest and lowest scores smax and smin,
R-�2 is defined as

R-�2 =
1

K

K∑
k=1

( |sk − ŝk|
smax − smin

)2

, (15)

where sk and ŝk represent the ground-truth and prediction scores
for the kth sample. Spearman’s correlation focuses more on the
ranks of the predicted scores while MSE and R-�2 focus on the
numerical values.

4) Implementation Details: For all experiments, we set the
feature dimension D = 128. We adopt the Adam optimizer with
the initial learning rate 1e-3, and the weight decay is set to zero.
We select ten exemplars for an input test video during infer-
ence and vote for the final score using the multi-exemplar vot-
ing strategy [24]. The attention layer in both student and teacher
branches is set as one with four heads. We set the number of
atomic queries in the student branch as four. We conduct ex-
periments on a machine with two NVIDIA GeForce RTX 3090
GPUs and one 2.40 GHz CPU.

B. Comparison With State-of-The-Art

1) FS1000: In Table II, we report the performance compar-
ison to the state-of-the-art methods on FS1000 dataset, which
include CNN-based [28], [34], LSTM-based [1], Transformer-
based [51] and MLP-based [10] approaches. FS1000 dataset
consists of different types of figure skating videos, which highly

TABLE III
COMPARISON WITH STATE-OF-THE-ART ON FIS-V DATASET

tests the robustness of the model. We replace text with au-
dio, which is the same as [10]. Our SGN outperforms all pre-
vious methods. In particular, our method gets a lower MSE
score and a higher Spearman correlation than MS-LSTM [1],
which demonstrates extracting semantic-aware representations
does work in understanding figure skating actions better. Mean-
while, we still achieve better performance when compared to the
strong MLP-Mixer [10].

2) Fis-v: The performance by different models in terms of
Spearman correlation and MSE are demonstrated in Table III.
We evaluate the performance with respect to TES and PCS as in
previous works. It is observed that our method achieves compa-
rable or better performance than existing methods. These experi-
mental results verify our analysis that guided by the semantic in-
formation, the student branch could also obtain semantic-aware
representations. Moreover, our finding certainly opens a door for
bringing multi-modality representation learning in video sports
understanding.

3) MTL-AQA: Besides datasets for figure skating, we also
conduct experiments on the MTL-AQA dataset, which also in-
cludes multi-modality inputs (i.e., visual and text) and is de-
signed for scoring diving actions. We summarize the perfor-
mance of our method on MTL-AQA in Table IV. Since the
MTL-AQA dataset includes degree of difficulty (DD) annota-
tions for diving actions, we also examine the impact of DD on
this dataset. We categorize all methods into two groups: those
that utilize the DD labels during the training phase (bottom sec-
tion of the table) and those that do not (upper section of the table)
as [27]. The experimental results show that the proposed model
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART ON MTL-AQA DATASET

TABLE V
COMPARISON WITH STATE-OF-THE-ART ON OLYMPICFS DATASET

achieves the best Spearman correlation and R-�2 regardless of
whether or not DD is used. These results indicate that exploit-
ing semantic information is conducive to understanding sports
videos better.

4) OlympicFS: We summarize the performance of different
methods in Table V. Besides our method, we also perform exper-
iments on recently proposed approaches [1], [5], [10], [24], [27]
with the publicly available source code. All training recipes are
kept the same for a fair comparison. All methods use the same
feature backbone [46], which is frozen during training. For [10],
we replace its audio information with our textual information.
It is observed that regardless of the type of score, our frame-
work delivers better results than others. Especially, our method
has a higher Spearman’s rank correlation and lower MSE than
CoRe [24], indicating that exploring semantic-aware represen-
tations does work in scoring figure skating.

For complexity, our method needs fewer trainable parame-
ters compared to previous approaches. Note that the complexity
of the backbone and the score regressor is not included when
calculating the parameters. In summary, the proposed method

TABLE VI
ABLATION STUDIES ON THE MODEL COMPONENTS

TABLE VII
ABLATION STUDIES ON LOSS FUNCTIONS. THE METRIC MSE IS REPORTED

achieves the best trade-off between accuracy and model com-
plexity.

C. Ablation Studies

1) Different Model Components: In this section, we perform
a set of ablation studies to evaluate the effectiveness of our pro-
posed model components and designs. All experiments use [46]
for feature extraction. In detail, we mainly analyze the following
models:
� Baseline: It directly pools the video features without Trans-

former and uses the regressor [24] for scoring.
� Encoder only: The visual encoder is used for feature ex-

traction. The atomic queries are not used here.
� Student branch: We define a set of atomic queries in the

student branch. The Transformer visual encoder and atomic
action decoder are also used. Only scoring loss is used as
supervision.

� Two branches: Besides the student branch, the teacher is
also used, but the fusion is made by the add operation.

� SGN: Our proposed method in Section IV.
Experimental results are shown in Table VI. Firstly, it is ob-

served that by using the Transformer, more useful features could
be extracted, leading to improved scoring accuracy. The perfor-
mance improvement achieved (from “Encoder only” to “Student
branch”) by using the atomic queries validates the effectiveness
of atomic queries. Such an improvement is further enlarged when
introducing both text and video clues in figure skating (i.e., two
branches), which further demonstrates that semantic learning is
really important in this field. Furthermore, a considerable boost
is also achieved when using our SGN, which agrees with our
analysis that compared to directly adding semantic and text fea-
tures, SGN could more effectively explore the semantic corre-
lations in sports videos.

2) Loss Function: Table VII shows the ablation studies on
the loss functions in Section IV-D. Note that the results gen-
erated by only using Lscore (the 1st row) are the same as the
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TABLE VIII
ABLATION STUDIES ON THE HYPER-PARAMETERS, INCLUDING THE ATTENTION

LAYERS (l) AND ATOMIC QUERIES (n)

student branch in Table VI. By mimicking the distribution of
attention (the 2nd row), improvements are achieved compared
to the baseline, which demonstrate the effectiveness of attention
distillation. The feature (Lcons) and score (Lc-cons) consistency
constraints in the 3 rd and 5th rows further verify the efficacy
of the alignment schema. In the end, the combination of all the
loss terms gives the best performance, confirming that our pro-
posed attention distillation loss, hidden embedding contrastive
loss and scoring consistency constraint are complementary to
each other.

3) Hyper-Parameters: This section will study the effect of
some important hyper-parameters, which include the attention
layers and atomic queries. Firstly, it is observed in Table VIII
(upper) that using more attention layers would import negligi-
ble or no improvement in performance. Considering the effec-
tiveness and efficiency, we use one attention layer for all ex-
periments. In addition, we summarize the effect of queries in
Table VIII (lower). It is observed that there is no significant im-
provement when increasing n. We conjecture it is because too
many queries may bring ambiguity to the model. Therefore, the
number of queries is set to four.

D. Visualization

Fig. 5 shows the cross-attention weights computed by (6) of
atomic queries on a video sequence in the student branch during
testing. The different fluctuations in the weight curve demon-
strate different attention patterns. It is observed that our method
pays more attention to the important moments in the video (such
as spin and jump), which verifies our analysis that our method
could extract semantic-aware representations in figure skating.
In Fig. 5(e), it is observed that the weight of cross-attention is
relatively high, but there are no crucial actions in this timestamp.
By analyzing the preceding sequence, we find that this times-
tamp corresponds to the end of a step sequence. We conjecture
that it is because the commentator’s narration occurs after the
step sequence.

VI. CONCLUSION

We have proposed an effective teacher-student network to
learn semantics-guided representations for scoring figure skat-
ing. Firstly, we define a set of atomic queries to mimic the atten-
tion distribution in the teacher branch, where the teacher branch

Fig. 5. Visualization of cross-attention weights in the student branch during
testing. The first row shows the weight curve of atomic queries on videos. The
next five rows are video segments corresponding to five markers on the curves,
i.e., (a), (b), (c), (d), and (e).

uses visual and text inputs to learn semantic-aware representa-
tions. In addition, we also propose three auxiliary losses to align
features in two branches. Experimental results on public (Fis-v,
FS1000, and MTL-AQA) and newly collected (OlympicFS)
datasets verify the effectiveness and efficiency of our method.
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