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Yaning Li, Qi Zhang, Xue Wang, and Qing Wang

School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, P.R. China

ABSTRACT

Pose estimation is the key step of simultaneous localization and mapping (SLAM). The relationship between the
rays captured by multiple light field cameras can provide more constraints for pose estimation. In this paper, we
propose a novel light field SLAM (LF-SLAM) based on ray-space projection model, including visual odometry,
optimization, loop closing and mapping. Unlike traditional SLAM, which estimates pose based on point-point
correspondence, we firstly utilize ray-space features to initialize camera motion based on light field fundamental
matrix. In addition, a ray-ray cost function is presented to optimize camera pose and 3D points. Finally, we
exhibit the motion map and 3D reconstruction results from a moving light field camera. Experimental results
have verified the effectiveness and robustness of the proposed method.
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1. INTRODUCTION

Simultaneous localization and mapping (SLAM) plays a key role in the field of automatic driving, aviation,
spaceflight and navigation. SLAM has been developed a systematic statement since it was first proposed by
A.J.Davison as a real-time monocular visual SLAM system (MonoSLAM).1 Afterwards, inspired from monoc-
ular SLAM system, some pratical SLAM systems were also developed successively, such as Parallel Tracking
and Mapping (PTAM),2 DT-SLAM,3 LSD-SLAM,4 SVO,5 ORB-SLAM,6 DPPTAM,7 REBVO,8 Direct Sparse
Odometry.9 At the same time, dual-purpose slam is also proposed and typical binocular slam has: LIBVISO2,10

ORB-SLAM2,11 S-PTAM,12 ORBSLAM-DWO,13 PL-StVO,14 ScaViSLAM.15 All the above methods estimate
the pose just by feature points thus the obtained matching relationship is sparse and not robust.

Light field can solve the sparse and robust problem in the process of pose estimation. Light field cameras16

can record spatial and angular information of light rays in 3D space. Levoy et al.17proposed a two-parallel
Planes model to model 4D light field data L(s, t, x, y), the parameters (s, t) and (x, y) represent the orientation
and position information, respectively. Liang et al.18 modeled the propagation process of light in Euclidean
space, and then proposed a parameterization method equivalent to two-parallel plane model. Existing light field
camera models19,20mostly define the projection from an arbitrary point in 3D space (passing through micro-lens)
to corresponding pixel on the sensor. Nevertheless, light field essentially represents the collection of rays in space.
In order to explore the relationship between rays in the process of pose estimation, ray-space projection model21

which provides more constraints for pose estimation is used.

In this paper, we exploit a novel light field SLAM (LF-SLAM) based on ray-space projection model, including
visual odometry, optimization, loop closing and mapping. Based on the rays’ relationship, we first initialize the
poses and world coordinates of each frame by ray-projection model and fundamental matrix on the front-end
so that we can get a global feature F . Secondly, in order to optimize the poses and 3D points, we propose
a ray-ray cost function to minimize the distance among rays. Furthermore, loop closing is used to eliminate
accumulative error. Subsequently, an effective mapping and 3D reconstruction is given. Finally, the quantitative
and qualitative comparisons demonstrate the effectiveness and robustness of the proposed light field SLAM
(LF-SLAM).

Our main contributions are

1) The ray-space projection model and fundamental matrix is used to initialize camera pose and 3D points.

2) On the back-end, a ray-ray cost function is proposed to optimize the pose and 3D points.
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2. RELATED WORK

SLAM model Generally speaking, SLAM can divide into two kind: monocular vision SLAM system and
binocular SLAM system. MonoSLAM1 is a typical monocular vision SLAM system which is proposed by A. J.
Davison. MonoSLAM extends the kalman filtering as a back-end to track the sparse feature points on front-
end. This system is the first time to realize on-line operation, nevertheless, there still exists some problem such
as: narrow scene, limited landmarks and easily lost sparse feature. After that, J. Engel4 proposed Large-Scale
Direct Monocular SLAM, instead of using keypoints, it directly operates on image intensities both for tracking
and mapping. LSD-SLAM4 could runs in real-time on a CPU, and even on a modern smartphone. More recently,
Mur-Artal et al. exhibit an ORB-SLAM.6 This system is based on ORB (Orinted FAST and BRIEF) feature
which have high efficiency compared to other features and it just need 33ms to calculate one frame of image.
The latest monocular SLAM system has REBVO8 and Direct Sparse Odometry.9 REBVO tracks a camera in
Real-time using edges, an on-board part doing all the processing and sending data over UDP and an OpenGL
visualizer. Direct Sparse Odometry integrates a full photometric calibration, accounting for exposure time,
lens vignetting, and non-linear response functions. As for binocular SLAM system, LIBVISO210is an 8-point
algorithm for fundamental matrix estimation and the majorization is based on minimizing the reprojection error
of sparse feature matches. ORBSLAM-DWO13 is developed on top of ORB-SLAM with double window, it
supports monocular, stereo, and stereo + inertial input for SLAM.
Light field camera model Ng proposes a hand-held light field camera22 in 2006, after that, some models
for reconstructing 3D points21and projection model based on light field camera are proposed20.21 Bok et al.19

proposes a 6-parameter geometric projection model for light field camera to estimate the intrinsic parameters.
This model acquires line features from micro-lens images of raw data directly. Guo et al.23presents a ray-space
motion matrix that describes how light field ray parametrization are transformed under different light field
coordinates, however, this model only considers the relationship between point sets under Plücker coordinates.
More recently, Zhang et al.24 simplifies the light field camera geometry as a 4-parameter model and calibrate
its intrinsic parameters, however this model can not fully explain light field camera geometry. Therefore, Zhang
et al.20 exhibits a 6-parameter multi-projection-center (MPC) model for light field cameras and this model
also apple to traditional cameras. On the basis of MPC, Zhang21 proposes a ray-space projection model and
fundamental matrix among multiple light field cameras. this model can describe ray-ray relationship between
light field cameras. In the work, we exploit the relationship between the rays captured by multiple light field to
initialize the pose and world coordinates of each frame and a ray-ray cost function to optimize them.

3. LIGHT FIELD SLAM

3.1 Initialization of Camera Motion by Ray-Space Projection Model

Light field describes the relationship between the rays. In our LF-SLAM, utilizes this relationship we can
initializes more exact positions and 3D points. Without loss of generality, we simplify our analysis between two
4D Light fields (L1, L2) to calculate fundamental matrix based on the rays.

Firstly, we parameterize the 4D light field in a relatives two-parallel plane coordinates.17 There is a view plane
with parameter (s-t) where Z = 0, and image plane (Z = f) with parameter (x -y). We normalize the spacing of
the two-parallel plane to 1. In this parametrization, the rays in light field can be described by r = (s, t, x, y)>.
Then we can construct a mapping between spatial points and image plane coordinates (x, y),21 λ=Z is the scale
factor, as shown in Fig. 1.

Secondly, The ray of two light fields L1(i, j, u, v), L2(i, j, u, v) can be obtained by feature extraction, respec-
tively. Then the light field L(i, j, u, v) is transformed into a normalized undistorted physical light field L(s, t, x, y)
through an intrinsic matrix,20 as shown in Eq. 1.

s
t
x
y
1

 =


ki 0 0 0 0
0 kj 0 0 0
0 0 ku 0 u0
0 0 0 kv v0
0 0 0 0 1



i
j
u
v
1

 (1)
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Figure 1. Two-parallel plane model for light field.

In this matrix, (ki, kj , kv, ku, u0, v0) are intrinsic parameters of a light field camera. The light field essentially
represents a set of ray,22 in order to get more constraints for pose estimation between these rays, the Plücker
coordinates is used to characterize the rays in this paper,21,25 as shown in Eq. 2.{

m = (s, t, 0)> × (x, y, 1)> = (t,−s, sy − tx)>

q = (x, y, 1)>
, (2)

where the pair of vectors (m>, q>)> represent the ray mathematically. m is the moment vector and q is
the direction vector. In this paper, we will model the process of sampling for light field camera in Plücker
coordinates. Substituting Eq. 1 into Eq. 2, based on ray-space intrinsic matrix K the relationship between the
ray L = (n>,p>)> captured by light field camera and the normalized undistorted physical ray Lc = (m>, q>)>

can be established in the Plücker coordinates, i, e.,

[
m
q

]
=


kj 0 0 0 0 0
0 ki 0 0 0 0

−kju0 −kiv0 kikv 0 0 0
0 0 0 ku 0 u0
0 0 0 0 kv v0
0 0 0 0 0 1


︸ ︷︷ ︸

=:K=
[
Kij

Kuv

]

[
n
p

]
, (3)

it should be noted that p = (u, v, 1)> represents the direction of ray in the sub-aperture image coordinates and
n = (i, j, 0)>× (u, v, 1)> is the moment of ray. After that, because all light field cameras recorded the scene rays
is in the world coordinates, using Eq. 4, each pair of light field camera coordinates can be related by a rotation
matrix R = (r1, r2, r3) ∈ SO(3) and a translation vector t = (tx, ty, tz)> ∈ R3

Xc
1 = RXc

2 + t (4)

Substituting Eq. 4 into Eq. 3, the correlation between rays in the light field coordinates system is[
n1

p1

]
= K−1

[
R E

03×3 R

]
K

[
n2

p2

]
, (5)

where E = [t]×R are essential matrix. L1 = (n>1 ,p
>
1 )> and L2 = (n>2 ,p

>
2 )> is the Plücker coordinates ray in

different light field camera coordinates, respectively.

Subsequently, Eq. 6 gives a necessary and sufficient condition for the intersection of two lines in the same
Plücker coordinates.

n>1 p2 + p>1 n2 = 0 (6)
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Substituting Eq. 5 into Eq. 6, the corresponding ray sets ( {L1} ↔ {L2} ) about fundamental matrix F
satisfies [

n>1 p>1
] [ Kij 03×3

03×3 Kuv

]> [
03×3 R
R E

] [
Kij 03×3
03×3 Kuv

]
︸ ︷︷ ︸

F

[
n2

p2

]
= 0 (7)

Then, the fundamental matrix F containing an unknown scale factor λ can be obtained by solving the
following linear euqations [

n>1 p>1
]
⊗
[
n>2 p>2

]
~F = 0, (8)

where ⊗ is a direct product operator and ~F is column vector (36×1) stretched the fundamental matrix F .

Finally, considering R is a rotation matrix R>R = RR> = I, we then combine Eq. 7 and have the pose
estimation for LF-SLAM [R|t]

λ

[
03×3 F 12

F 21 F 22

]
=

[
03×3 K>ijRKuv

K>uvRKij K>uvEKuv

] λF 12 = K>ijRKuv

⇒ λF 21 = K>uvRKij

λF 22 = K>uv[t]×RKuv

(9)

λ =
1

2

 1∣∣∣K−>ij F 12K
−1
uv

∣∣∣ +
1∣∣∣K−>uv F 21K

−1
ij

∣∣∣


R = λK−>ij F 12K
−1
uv

[t]× = λK−>uv F 22K
−1
uvR

>

(10)

In this formula derivation, the intrinsic matrix K is known. | · | denotes the determinant of matrix and Fmn

is a 3×3 partitioned matrix.

3.2 Nonlinear Optimization for Camera Pose and 3D Points

In this section, the initial camera pose and 3D points computed by the linear method will be refined via nonlinear
optimization. Different with traditional re-projection error, we define a ray-ray cost function to optimize the
camera pose. In this nonlinear solution, we are seeking extrinsic parameter [R|t] to minimize the geometrical
distance between the ray set Lc = (m>, q>)> = K(n>,p>)> on the calibrated light field camera coordinates
and its estimate value L̂c as shown in Eq. 11.∑

d
(
Lc
1 (K,L1) , L̂c

1 (K,Rt,L2)
)

+ d
(
Lc
2 (K,L2) , L̂c

2

(
K,R>,−R>t,L1

))
, (11)

where d (Lc
1,Lc

2) =
|m>

1 q2+q>
1 m2|

‖q1×q2‖
is the geometric distance between two rays under Plücker coordinates.

After that, we state a point-ray cost function to optimize the 3D points. This function purpose is to minimize
the geometrical distance between the 3D point set and ray set. According to Eq. 12, Xc

1, L̂c
1 are the 3D point

set and the estimate value of ray set in light field camera coordinates ,respectively. Lc
2 , X̂c

2 are the ray set and
estimate value of 3D point set in light field camera coordinates , respectively.∑

d
(
Xc

1, L̂c
1 (K,Rt,L2)

)
+ d

(
X̂

c

2

(
Xc

1,R
>,−R>t

)
,Lc

2 (K,L2)
)

, (12)

where d (Xc,Lc) = [q]×
{

[Xc]× −m
}

denotes the geometric distance between 3D points and rays under Plücker
coordinates.

In this paper, the Levenberg-Marquardt26 algorithm is used for nonlinear optimization. The complete pro-
cedure of LF-SLAM is given in Algorithm 1.
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Algorithm 1 LF-SLAM

Input:
N group of light field date LF (i, j, u, v, ), N group of depth value Depth(u, v), Intrinsic matrix K.

Output:
Position Ri, ti (1 <= i <= N), 3D point X.

1: Initialize the first frame
2: Get ray-space features
3: Global feature F (Lc

i ,X
c
i ) by Eq. 3

4: for j = 2 to N do
5: Get and match ray-space features [F i−1,F i]
6: Calculate Lc

i by Eq. 3
7: Calculate Xi,Ri, ti by Eq. 7,10
8: Update global feature F
9: Loop

10: end for
11: for j = 2 to N do
12: Optimize Xi,Ri, ti by Eq. 11,12
13: end for
14: Mapping

4. EXPERIMENTAL RESULTS

In the experiment, we simulate a light field camera to obtain different poses whose intrinsic parameters are listed
in Table 1. In this paper, the system used in this experiment is Ubuntu14.04, PCL point cloud library and G2O
general graph optimization library. The simulation scene data used in this experiment is built by Blender3D
modeling software.There are 5×5 view points for each pose in the living room data and 7×7 view points in the
desk data.

Table 1. Light field camera intrinsic parameters

ki kj ku kv u0 v0
0.0347826 0.0347826 0.00165631 0.00165631 −0.4579710 −0.4579482

According to Algorithm 1, we did initialization and nonlinear optimization the pose on the desk data. Let the
light field camera pose of the first frame be the world coordinates. This coordinates is the reference coordinates
system for all the subsequent data. Fig. 2 shows an initial feature map. Fig. 3 (a) is the depth estimation error
and Fig. 3 (b)(c) is ray re-projection absolute error and ray re-projection relative error on simulated data with
different poses, respectively. The ray re-projection relative error is defined as dividing absolute error by the true
value of related ray re-projection. According to Fig. 3, the ray re-projection error increases with the increase
of the number of poses, nevertheless, the rate of error increase is decreases in the second half, what is more,
there are positive correlations between ray re-projection error and depth estimation error. Fig. 4 shows the pose
estimation error on the desk data, Fig. 4 (a) and Fig. 4 (b) show the absolute error and the error varition rate
of pose estimation, respectively. The error varition rate is defined as ∆Error = Epose

i − Epose
i−1 , where Epose

i

indicates the absolute error for the i-th frame. The change law of pose estimation error is consistent with Fig. 3.

The light field camera movement locus for desk data is shown on Fig. 5, the green movement locus is obtained
by proposed method and red movement locus is the ground truth. Fig. 5 shows that the estimation of camera
motion is relatively accurate by proposed method, furthermore, the subsequent poses can estimate the camera
poses accurately in the case of frame skip and reduce the error gradually, which further verifies the effectiveness
of nonlinear optimization. Finally, it is vital to accurately reconstruct 3D points. In this section, combining with
depth map and the pose estimation data for each frame, the 3D reconstruction result for living room data and
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Figure 2. (a) initial feature map of desk data; (b) corresponding features are displayed in the center view.

Figure 3. Depth and ray re-projection error map on desk data. (a) depth estimation error; (b) ray re-projection absolute
error; (c) ray re-projection relative error.

Figure 4. Pose estimation error on the desk data. (a) absolute error ; (b) the error change ratio.
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Figure 5. Movement locus for desk data.

Figure 6. 3D reconstruction results from single light field frame. (a) desk data; (b) living room data.

desk data is given. Fig. 6 is a light field date 3D reconstruction result for single frame, the subscript of the figure
is the corresponding frame number. As shown in Fig. 6, due to the error in the depth value there are a lot of
noise, error points and some missing values in the single pose reconstruction result. Therefore, multi-pose data
is used to optimize the reconstruction results in this paper. Fig. 7 is the reconstruction results for desk data (
Fig. 7 (a) ) and living room data ( Fig. 7 (b) ). It is obvious from the Fig. 7 noise is greatly reduced, holes and
missing parts are well complemented in the result of multi-pose reconstruction. This results further prove the
correctness of proposed method.

5. CONCLUSIONS

In this paper, according to the projection relationship between the rays in 3D space, we exploit a novel light
field SLAM (LF-SLAM) based on ray-space projection model. We first initialize camera motion by ray-space
projection model. After that, a novel ray-ray cost function and a point-ray cost function are established to
nonlinearly optimize the camera pose and 3D points. Finally, the experiments on qualitative and quantitative
comparisons verify the effectiveness and robustness of the proposed LF-SALM.
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Figure 7. 3D reconstruction results from multiple light field data. (a) desk data; (b) living room data.
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